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Abstract

We present two new classes of pattern search algorithms for unconstrained min-

imization: the rank ordered and the positive basis pattern search methods. These

algorithms can nearly halve the worst case cost of an iteration compared to the classi-

cal pattern search algorithms. The rank ordered pattern search methods are based on

a heuristic for approximating the direction of steepest descent, while the positive basis

pattern search methods are motivated by a generalization of the geometry characteris-

tic of the patterns of the classical methods. We describe the new classes of algorithms

and present the attendant global convergence analysis.
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1. Introduction. In this paper we introduce two new classes of pattern search

algorithms: the rank ordered and positive basis pattern search methods for the uncon-

strained minimization problem

minimize f (x ).
xER n

The rank orderedand positivebasispatternsearchmethods extendthe analysisdevel-

oped in[12].These new classesofalgorithmscan almosthalvethe worstcasecostofan

iterationwhen compared with the classicalpatternsearchmethods consideredin [12].

Moreover,the simpleheuristicsthatmotivaterank orderedand positivebasispattern

searchmethods are intuitivelyappeahng and make the methods straightforwardto

describe.

PatternSearchmethods form a classof"steepdescent"procedures(aterm we will

shortly explain) for nonlinear minimization. Examples include [1], [6], and [11]. While

these algorithms have no explicit recourse to a Taylor seriesmodel of the objective, or

any information about directional derivatives, one can develop a global convergence

analysis for pattern search methods with results similar to those for quasi-Newton

methods.

This is possible because pattern search methods are gradient-related, so that when

the steps become small enough, they are are guaranteed to capture a portion of the

improvement promised by the steepest descent direction. This intuition seems to
have been in the minds of the early developers of the broader class of direct search

methods; for instance, Spendley, Hext, and ttimsworth [9] refer to their algorithm as a

method of "steep ascent" (they were considering maximization) to indicate its kinship

to the method of steepest ascent. The convergence analysis for pattern search methods

confirms that this is particularly apt and we therefore propose the term "methods of

steep descent" to describe pattern search methods..
A characterization and analysis of a class of pattern search methods is presented

in [12]. Key to the global convergence analysis is the fact that these methods produce
iterates that lie on a rational lattice. To ensure global convergence, the pattern search

methods discussed in [12] must satisfy a condition that prevents the mesh size from

being reduced if one of the steps in a set of 2n core steps produces decrease in the

objective value. This condition allows the acceptance of any step that lies in a certain
finite subset of the lattice as long as the step produces simple decrease on the objective

value at the current iterate, and plays the role in the global convergence analysis of

pattern search methods that is played by the fraction of Cauchy decrease condition

for trust-regions and the Armijo-Goldstein-Wolfe conditions for line-searches.

As a consequence, one can construct pattern search algorithms that require, in the

best case, only one new objective value per iteration. This feature is used to advantage

in a proposed strategy for scientific and engineering optimization [4] for problems in

which the computational cost of a single objective evaluation is sufficiently great as

to merit particular care in choosing steps at which to evaluate the objective. On the

other hand, the worst case occurs when it is necessary to reduce the mesh size to make

further progress, for instance, because the search has reached a neighborhood either
that contains a local minimizer or where the objective is highly nonlinear. For the

classical pattern search algorithms studied in [12], as many as 2n objective evaluations

may be necessary in this case.
The rank ordered pattern search methods and positive basis pattern search meth-

ods that we introduce here improve this worst case bound to n + 1 objective values.



Theydo thisby reducingto aminimalsizethesetof directionsthat wemustconsider
to beassuredof havingasufficientlyrichsetof searchdirectionsto captureasuitably
largecomponentof the directionof steepestdescent.

The rank ordered pattern search methods are motivated by the following heuristic.

Suppose that in addition to the objective value at the current iterate xk, we know the

objective value at n other suitably independent points. Then the direction from the

point with the highest objective value to the point with the lowest objective should

be, when this pattern of points is sufficiently small, a crude estimate of the direction of

steepest descent. Unlike a finite-difference approximation to the direction of steepest
descent, this approximation ignores the distances between the points (and thus the

relative rate of change). On the other hand, this estimate only requires that we identify

the best and worst objective values among a set of n + 1 values. This is in keeping

with a distinctive feature of pattern search methods: namely, that they only require

information about the relative rank of objective values, and can actually be used in

the absence of any numerical objective value, as might be the case when the algorithm

is driven by a subjective preference on the part of the user.

The analysis in [12] does not make use of rank-order information, though it is

implicit in the multidirectional search algorithm considered there. As it happens, the

simple heuristic of using rank ordering and the notion of "steep descent", described

above, to suggest search directions suffices to prove global convergence. We note that
this heuristic also motivates the direct search method of Nelder and Mead, which is

not a pattern search method and is known not to be robust [8], and the aforemen-

tioned direct search method of Spendley, Hext, and Himsworth [9], the very interesting

analysis of which we will discuss elsewhere.

The heuristic of using the best and worst objective values to suggest a direction

of steep descent reduces the cardinality of the core set of steps from 2n to n + 1,

but may introduce an inherently sequential component into the algorithm. It may

be the case that we cannot specify the final search direction until after the first n

points have been evaluated and ranked. The positive basis pattern search methods
have the attractive feature that they avoid this sequentiality and thus are well-suited

for parallel implementation.
It was in the course of re-examining the work on direct search methods by Yu

Wen-ci [13, 14] that we realized the utility of the theory of positive linear dependence

developed by C. Davis in [3] for generalizing pattern search methods in a useful way.

One can view the positive basis pattern search methods as the natural generalization

of the algorithms considered in [12].

We say "natural" for the following reason. In the class of algorithms studied in

[12], the 2n core directions played the technical role of ensuring that we would search
in a direction that made a positive inner product with the direction of steepest descent.

The notion of a positive basis [3] is the correct way to generalize this latter property,

and allows us to reduce, a priori, the cardinality of the core set of steps from 2n to as

few as n + 1. Because this core set can be specified in advance, we avoid the sequential

element of the rank ordered pattern search methods.

Notation. We denote by R, Q, Z, and N the sets of real, rational, integer, and

natural numbers, respectively.
All norms are Euclidean vector norms or the associated operator norm. We define

i(x) = {y: f(y) __ f(x)}. We will denote the gradient Vf(x) by g(x) and the gradient



at iteration k g(xk) by gk.
By abuse of notation, if A is a matrix, y E A means that the vector y is a column

of A. We will also use c and C to denote divers constants whose identity will vary

from place to place but whose nature will never depend on the iteration k.

2. Pattern Search Methods. Pattern search methods, including the two new

classes of algorithms under discussion, are characterized by the nature of the generating

matrices and the exploratory moves algorithms. These features are discussed more

fully in [12].
To define a pattern we need two components, a basis matrix and a generating

matrix. We will expand the class of pattern search algorithms by expanding the class

of admissible generating matrices.
The basis matrix can be any nonsingular matrix B E R nxn. The generating

matrix is a matrix Ck E Z nxpk , where Pk > n + 1. We partition the generating matrix

into components

(1) Ck = [ rk Lk 0 ].

We require that I'k E M, where M is a finite set of integral matrices with full row

rank. In §2.1 and §2.2 we will discuss further requirements on the members of M; we

will see that I'k must have at least n + 1 columns. The 0 in the last column of Ck is

a single column of zeros.

A pattern Pk is then defined by the columns of the matrix Pk = BCk. For

convenience, we use the partition of the generating matrix Ck given in (1) to partition

Pk as follows:

Pk = BCk = [Brk BLk 0 ].

Given Ak E R, Ak > O, we define a trial step s_ to be any vector of the form

s_ = AkBc_, where c_ is a column of Ck. Note that Bc_ determines the direction of

the step, while Ak serves as a step length parameter.
At iteration k, we define a trial point as any point of the form x_ = xk + s}_, where

xk is the current iterate.

Algorithm 1 states the pattern search method for unconstrained minimization.

To define a particular pattern search method, we must specify a basis matrix B, the

generating matrices Ck, the exploratory moves to be used to produce a step sk, and

the algorithms for updating Ck and Ak.

Algorithm 1. The pattern search method for unconstrained minimization.

Let x0 E R _ and A0 > 0 be given.

For k = 0,1,.--,

a) Compute f(xk).

b) Determine a step .sk using an unconstrained exploratory moves algorithm.

c) If f(xk + sk) < f(xk), then Xk+l = xk + sk. Otherwise Xk+l = xk.

d) Update Ck and Ak.

If f(xk + sk) < f(xk) we call the iteration successful; otherwise, we call the

iteration unsuccessful.

We have the following Hypotheses on Unconstrained Exploratory Moves. This is

the same as in [12]. The specification of the matrix I'k in (1) is different from that in



[12],however.There,l?kwasrequiredto bea n × 2n matrix with full row rank. The

Hypotheses on Unconstrained Exploratory Moves require that before an iteration is
declared unsuccessful, we must examine all the steps in the core pattern determined

by AkBFk for a lower objective value. Thus, for the algorithms considered in [12], in

the worst case one would need to compute a minimum of 2n objective values in an

iteration. In the rank ordered and positive basis pattern search methods, however, the

size of Fk can be as small as n × (n + 1), which has the effect of reducing the worst

case cost of an iteration to n + 1 objective evaluations.

Hypotheses on Unconstrained Exploratory Moves.

1. sk E AkPk =- AkBCk = Ak [Brk BLk 0].

2. Ifmin{f(xk+y) [ y e AkBFk } < f(xk), then f(xk + sk) < f(xk).

Algorithm 2 specifies the rule for updating Ak. The conditions on 0 and A ensure

that 0 < t? < 1 and _ >_ 1 for all Ai E A. Thus, if an iteration is successful it may be

possible to increase the step length parameter Ak, but Ak is not allowed to decrease.

Algorithm 2. Updating Ak.
Let v E Q, r > 1, and {wo, wl,'-",WL} C Z, w0 < 0, and wi >_ 0, i = 1, .--,L. Let

0 = 7-_°, and Ak E A = {v_l, .--,v_L}.

a) If f(xk + .sk) _> f(xk) then Ak+l = OAk.

b) If f(xk + sk) < f(xk) then Ak+l = AkAk.

2.1. Rank Ordered Pattern Search Methods. As discussed in the Introduc-

tion, one can use the best and worst objective values in a portion of the pattern to

suggest an intuitive direction of steepest descent for exploration. This heuristic, which

we will develop formally here, ensures that when A k is sufficiently small, one has a

trial step that is a suitably good direction of descent.
For the rank ordered pattern search methods, the generating matrix is an n × pk

matrix, pk > n + 1, which we partition as:

Ck = [ Sk Rk Lk 0 ] = [ rk Lk 0 ].

We require Sk to be a nonsingular element of Z _xn. The notation Sk is chosen to

suggest simplex, and Rk is meant to suggest reflection, as in the multidirectional

search algorithm [11].

Let Sk = [d_ d_.--d_] and consider the simplex with vertices

(2) {xk, xk + AkBd_,xk + AkBd_,...,xk + AkBd_} = {v_,vlk, v_,'",v_},

where the vertices are ordered (and possibly relabeled) so that

, f V n-1(3) f(v_) <__/(v_),.-. ( k ) -< f(v;).

Note that we only need to identify the vertices with the best and the worst objective

values; we are not required to give a relative ranking of the remaining n - 1 vertices.
Given the best and worst objective values among the vertices of the simplex (2),

we can then say how Rk is chosen. We require Rk to contMn a column of the form

n

(4) Ep_Akl g -1 (V O- vik) , p_ ___ O, p_ > O.

i=1
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The presenceof acolumnof this formin Rk means that the core pattern AkBFk will

contain a trial step of the form

n

i=1

Since the column defined by (4) is contained in I"k = [Sk Rk], there are, implicitly,

further restrictions on the choice of p_, i = 1,...,n, because Fk E M, and M is a

finite set of integral matrices with full row rank. One choice would be to set p_ = 0 for

i = 1,.- -, n - 1 and p_ = 1. An example can be seen for R 2 in Fig. 4. Another choice

would be to set p_ = 1/n for i = 1,-. -, n, provided that the Rk that results is integral.

This can be arranged if one is willing to scale B appropriately. The latter choice gives

equal weight to all the n potential descent directions (v_ - v_) for i = 1,.-., n.

The requirement that p_ > 0 ensures that at least one of the search directions

defined by BRk is biased towards the direction from the worst vertex to the best.

This distinguished direction will, when z_k is small, capture enough of the direction

of steepest descent to allow us to prove global convergence.
Here we see how using the rank-order information and the steepest edge heuristic

can introduce a sequential element into the definition of Ck. For instance, the choice

p_ = 0 for i = 1,-.., n - 1 and p_ = 1 means that we cannot define Rk until we have

o and _ satisfying (3).identified vk vk

2.1.1. An example of a rank ordered pattern search method. In Fig. 1

we give an example of a rank ordered pattern search method. This algorithm is

a sequential variant of the parallel multidirectional search algorithm of Dennis and

Torczon [5].
One of three possible steps are accepted at the conclusion of each iteration: a

reflection step, an expansion step, or a shrink step. Examples for each of these three

steps in R 2 can be seen in Figs. 2, 3, and 4, respectively. Note that since we know the
v 0values of f( k),'", f(v_) upon entry into iteration k, this fairly conservative variant

of a rank ordered pattern search method computes exactly n + 1 objective values at

each iteration, regardless of the step that is finally accepted. More elaborate variants,

which attempt to compute a single objective value per iteration, are possible. The

variant we present here has the advantage of being both simple and robust.

2.2. Positive Basis Pattern Search Methods. The positive basis pattern

search methods will be described in terms of the notion of positive linear dependence

developed in [3]. Positive linear dependence captures the essential technical role played

by the core pattern in [12].

The positive basis pattern search methods are also motivated by the requirements

of parallel computing. As we have seen, the rank ordered pattern search methods may

introduce a sequential element into the computation since we must satisfy (4). As we

have seen, this may require the identification of the worst vertex before we can append

the remaining search direction in the pattern. As a consequence, Amdahl's Law says

that we can at most halve the execution time of a single iteration via computational

parallelism, regardless of the number of processing units available. The positive basis

pattern search methods avoid this sequentiality by imposing a geometric condition

on rk. Thus the positive basis pattern search methods are ideally suited for parallel

implementation since the algebraic conditions on Fk can be satisfied a priori and



{v0,v0, -•., v_}Start with an initial simplex with vertices 0 1

and evaluate f(vJo), j = 0,.--,n.

for k = 0, i,---

Reorder the vertices of the simplex so that

• .,f(v k ) < f(v_)f(v_) <_ f(v_),, n--I

Check the stopping criteria.
0 n

rk _ 2 vk -- vk

evaluate f(rk)

if (f(rk) < f(v_)) then
0 2 nek +---3 v k- vk

evaluate f(ek)

if (f(ek) < f(rk)) then

n __. ekVk+ 1

for j = 1,---,n- 1

J _ 3v °- 2vgVk+ 1 •

evaluate Jf(vk+l)
end for

else
n

Vk_t_ 1 _ rk

for j = 1,...,n- 1

/* reflection step */

/* expansion step */

/* accept expansion */

/* expand simplex */

/* accept reflection */

/* reflect simplex */

J -- 2v°-vk+ 1 ,

evaluate Jf(vk+l)
end for

end if

else

for j = 1,.- -, n /* shrink simplex */
J 1 0 "vk+1 _ _vk+ ½v_

evaluate f(vJk+l)
end

end if

end

FIG. 1. A straightforward rank ordered pattern search method.

allow all the necessary objective evaluations for a single iteration to be independently

computed in parallel.

2.2.1. Positive linear dependence. We present here the ideas we will need

from the theory of positive linear dependence [3]. The positive span of a set of vectors

{al,"-,a_} is the cone

{ a E R n ] a = Clal -t- .'' -t- Crar, Ci __ 0 for all i }.

The set {al," ", at} is called positively dependent _f one of the ai's is a nonnegative

combination of the others; otherwise the set is positively independent. A positive basis

is a positively independent set whose positive span is R _. The following theorem from

[3] indicates that a positive spanning set contains at least n + 1 vectors.
THEOREM 2.1. Suppose {a_,...,a_} positively spans R n. Then {a2,-'-,a_} lin-

early spans R _.
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v k

FIG. 2. A reflection step of the straightforward rank ordered pattern search method, given the simplex

with vertices {v °, vk,1 vk}.

The following characterizations of positive spanning sets can be found in [3] as well.

THEOREM 2.2. Suppose {al," ",at}, ai _ O, linearly spans R n. Then the follow-

ing are equivalent:

1. {al,'" ", ar} positively spans R n.

2. For every b _ O, there exists an i for which bTai > O.

3. For every i = 1,...,r, -ai is in the convex cone positively spanned by the

remaining ai.

A positive basis that contains n + 1 elements is called minimal. One can Mso show

[3] that a positive basis can have no more than 2n elements; such a basis is called

maximal. A maximal positive basis has a very special structure: it must consist of a

linear basis for R _ and the negatives of those basis vectors. On the other hand, it

is easy to see that such a collection of 2n vectors is a positive basis, as the next two

propositions show.
PROPOSITION 2.3. Suppose {al,-" .,a_} is a positive basis for R n, and B is a

nonsingular n × n matrix. Then the set {Bal,..., Ba_ } is also a positive basis for R n.

Proof. Because B is nonsingular, the set {Bal,-'-, Bar} linearly spans R n. More-

over, because {al,-..,a_} is a positive basis, by Theorem 2.2, part (2), given arty

b E R n, b _ 0, there exists an i for which

(BTb)Tai = bTBai > O.

But this means that {Bal,..-, Ba_} is a positive basis for R n. I:]

PROPOSITION 2.4. If B is a nonsingular n × n matrix, then the columns of the

matrix [B - B] form a positive basis.

Proof. By part (2) of Theorem 2.2, we know that the matrix [I - If is a positive

basis. The result then follows from Proposition 2.3. [3
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Vk

ek

FIG. 3. An expansion step of the straightforward rank ordered pattern search method, given the simplex

withvertices{v°, yD.

2.2.2. Description of the positive basis pattern search algorithm. In a

positive basis pattern search method, we require the generating matrix Ck to be any

n × Pk matrix, Pk > n -b 1, of the form found in (1), but now we require Fk to be a

positive basis for R _. Proposition 2.3 then says that at every iteration k, AkBFk will

also be a positive basis for R n.

2.2.3. Examples of positive basis pattern search methods. The classical

pattern search methods considered in [12J--coordinate search with fixed step length,

Hooke and Jeeves, and Evolutionary Operation using factorial designs--are all positive

basis pattern search methods as we have defined them. The generating matrix in [12]

has the form

Ck = [ Mk -Mk Lk 0 ]

for some n × n nonsingular matrix Mk] In fight of the discussion in §2.2, the nature

of rk = [Mk - Mk] as a maximal positive basis is now revealed.

We are not aware of any classical pattern search method that uses a positive basis

that is not maximal. Coordinate search with fixed step length, Hooke and Jeeves, and

Evolutionary Operation using factorial designs all use positive bases with 2n elements.

But it is not difficult to use the general notion of a positive basis to invent new

pattern search methods that are proper extensions of the class of algorithms studied

in [12]. Such methods have a practical appeal because we can reduce the number of

objective evaluations in the worst case from 2n to as few as n + 1.
Here are two possible choices for Fk that lead to minimal positive basis pattern

search methods. Let e = (1, 1,-.., 1) T, and consider

(6) Fk = [nI - e]



S
Vk

1
Vk

/
rk

FIG. 4. A shrink step of the straightforward rank ordered pattern search method, given the simplex
0 1 2

with vertices {vk, vk, vk}.

and

(7) rk=[I -e].

It is not difficult to see from Theorem 2.2, part (2), that the columns of each matrix

form a positive spanning set, and since there are n + 1 columns in each case these

positive spanning sets are minimal positive bases.
_[blConsider first the choice (6). If the basis matrix is given by B .... bn], then

BFk = [bl "-bn bn+l] where bn+l = --1 fi bi.
n i=1

Thus, the trial steps in this pattern are the vectors {bl,---,b_} together with the

negative of their average. In Fig. 5 we illustrate an example of such a minimal positive

basis for R 2.

v__= (1°6'_/_

_k =(/"

Vk2 = (34,--43) T

FIG. 5. A minimal positive basis for 1_2 with basis vectors bi = (vik -- xk) for i = 1,.--, 3.



For the choice (7), suppose B = [bl---bn]. Then

n

BFk = [bl-" "bn bn+l] where bn+l = -_--]_ bi.
i----1

This pattern has an interpretation in terms of a simplex. We claim that these vectors
are the vectors from the centroid of a simplex to the vertices of the simplex. If

Vl,-. •, vn+l are the vertices of a simplex and

1
_ _v i

n+li= 0

is the centroid, we wish to know whether we can find vi for which bl = vi - _. This is

the same as seeking a solution of the system of equations

1 _feeT) =

where

= [Vl...Vn+I]

b = [bl""bn+l].

Let

A=I 1 eeT;
n+l

then we are asking whether we can solve V,4 =/}. We have the following alternative:

either VA =/) has a solution, or there e_sts y such that Ay = 0, By _ O. However,

and/) have the same nullspace: namely, that spanned by the vector e. Thus, it must

be the case that we can solve VA =/}, which means we can interpret the pattern as

the vectors from the centroid of a simplex to the vertices of the simplex.

Having noted two possible positive bases that satisfy our requirements for a pos-

itive basis pattern search method, in Fig. 6 we give an example of a positive basis

pattern search method. Note that this uses an exploratory moves strategy that is
identical to that used for the Evolutionary Operation algorithm (see either [2], [10],

or [12]). but instead of using a two-level factorial design, which requires 2n objective

values per iteration, the positive basis allows us to implement a design with as few as

n + 1 objective values per iteration.

2.2.4. The relationship between positive basis and rank ordered pat-

tern search methods. There is an overlap between the class of positive basis pattern

search methods and rank ordered pattern search methods, as we shall soon demon-

strate. However, it is instructive to see that the two classes are not equivalent.

To see that we cannot necessarily cast a rank ordered pattern search method as

a positive basis pattern search method, we return to the example given in §2.1.1,

where (rk - v_) = (v_- v_). Note that rk is a legitimate reflection step for a rank

ordered pattern search method since it satisfies (4) and (5). Fig. 7 shows that the

set {(v_ - v_), (v_- v_),(rk- v_¢)} does not form a positive basis for R 2 because we
cannot find a member of the set for which the inner product with the vector (b - v_¢)

is strictly positive. Thus we violate part (2) of Theorem 2.2.

10



Start with an initial point x0, a positive basis BF = [B71 ---BTP], and A0 > 0.

Evaluate f(xo).
for k = 0, 1,...

Check the stopping criteria.

for i = 1,---,p /* this loop can be paratlelized */

s_ = AkB7 i

evaluate/( k + 4)
end for

sk = a rgmin{f(xk + .s[.)}

if f(xk + .sk) < f(xk) then

Xk+l -_ Xk q- 8k

ik+l : /_k

else

Xkq_ 1 _- X k

Ak+ a = 1A k
end if

end

FIG. 6. A straight]orward positive basis pattern search method.

/* the sole synchronization point */

To see that it is not always possible to cast a positive basis pattern search method

as a rank ordered pattern search method consider the example shown in Fig. 8. Here

the set ofvectors {(rk-v_),(v_- o 2_vk),(v k v_)} does form a positive basis for R 2, but

the vector (rk - v_) does not constitute an acceptable reflection step for a rank ordered

pattern search method. The difficulty in this instance is that (rk - v_) is orthogonal

to (v_ - v_), thus violating conditions (4) and (5) which our analysis imposes upon
rank ordered pattern search methods.

As can be seen in Fig. 9, the multidirectional search (MDS) algorithm lies in the

intersection of the two approaches. The set of vectors {(v_ - v_),.-.,(v k_- v_), (v ko_

1 0 n 0 (r k v°)} forms a maximal• . --Vk) , • "', --v_), .,(v_--v_)}-- {(vk--vk),''',(vk--Vk),(rlk 0 n

positive basis for R n. We can implement MDS as a parallel algorithm by simultane-

ously computing the objective values at all 2n points defined by the simplex and its

reflection. In doing so, a priori we treat all the vertices of the original simplex, ex-

cept the best vertex v_, as possibly being the worst and thus remove the sequential

bottleneck or any need to coordinate such information across processes• This is equiv-

alent to implementing a positive basis pattern search method with a maximal positive

basis. However, we can certainly also implement MDS as a sequential algorithm, as

demonstrated in §2.1.1, and take full advantage of rank order information in an effort

to reduce the number of function evaluations per iteration. We do so, however, at the

expense of a sequential element that limits the effective use of parallel computing.

We close by noting that the convergence analysis for pattern search methods is

flexible enough to accommodate a myriad of other combinations that may perhaps be

more appropriate for a given application. We have illustrated only a few of the many

options.

3. Convergence analysis. The convergence results for positive basis and rank

ordered pattern search methods are like those in [12]:

11



(91'101)T

V k =

b
V_ = (103,41) T

= (55,291T
/ ,

/
rk = (19,-43) T

FIG. 7. A demonstration that a rank ordered pattern search method may not necessarily be a positive

basis pattern search method

THEOREM 3.1. Suppose L(xo) is compact and suppose f is continuously differ-

entiable on an open neighborhood Ft of L(xo). Let {xk} be the sequence of iterates

produced by either a rank ordered or a positive basis pattern search method for uncon-

.strained minimization (Algorithm 1).
Then

liminfllg(xk) ]l = O.
k---++_

We will henceforth assume that f is continuously differentiable on an open set

Ft containing the compact set L(xo). However, for Theorem 3.1 (and Theorem 3.2

to follow) we really only need f to be continuously differentiable on L(xo). Under

that assumption, one would need first to derive estimates that show that if x0 is not a

stationary point then a pattern search method eventually will move into the interior of

L(xo). One would then derive a similar set of estimates and show that these estimates
are uniform on L(xl), in the interior of L(xo). The assumption that f is continuously

differentiable on a set slightly larger than L(xo) makes the proof shorter and clearer

at little expense of generality.

As in [12], we can also obtain a stronger result. To do so, we must ultimately

stop allowing Ak to become larger, and we must require that the algorithm examine

all the points of the core pattern, according to the Strong Hypotheses on Exploratory

Moves.

With these restrictions, we obtain the following result:

TrIEOREM 3.2. Suppose L(xo) is compact and suppose f is continuously differ-

entiable on an open neighborhood _ of L(xo). In addition, assume that the columns

of the generating matrices are uniformly bounded in norm, that in the update of Ak,

we have )_k = 1 for all k after some iteration, and that the pattern search method

for unconstrained minimization (Algorithm 1) enforces the Strong Hypotheses on Ex-

pIoratory Moves. Finally, let {xk} be the sequence of iterates produced by either a rank

ordered or a positive basis pattern search method for unconstrained minimization.

12



xk _- rk ----_7_.vl -- (106'p 56)T

= (34,-43):o

FIG. 8. A demonstration that a positive basis pattern search method may not necessarily be a rank

ordered pattern search method

i_ = (91,101) T

._V_ ----(103,41) T

'r_ (19, '43)_' _ 55'29)T.

FIG. 9. A reflection step ]or a parallel implementation of the multidirectional search algorithm.

Then

lim IIg(xk)II = o.
k---++_

By restricting the update of Ak to allow only Ak = 1 for all k after some iteration,

we are assured that limk_+_ Ak = 0. This is a corollary of Theorem 3.18.
The outline of the proof for Theorem 3.1 follows that of [12] as developed in [7]:

1. First we show that given _} > 0, there exists 5 > 0 (independent of k) such

that if II g(xk) N > _ and Ak < 5, then a pattern search algorithm will find

an acceptable step without further decrease of Ak.
2. We then show that if liminfk_-++_ Ng(xk) II _ 0, then there exists a nonzero

lower bound on Ak.

3. Using purely algebraic properties of iterates produced by pattern search meth-

ods, we show that we must necessarily have liminfk__,+_ Ak = 0.

13



Strong Hypotheses on Exploratory Moves.

1. sk E AkPk =- AkBCk -- Ak [Brk BLk 0].

2. If min{f(xk + y), y E AkBrk} < f(xk), then

f(xk + sk) _< min{f(xk + y), y E AkBI'k}.

4. We then conclude that we must have liminfk_+oo I[ g(xk) II = o.

The analysis of positive basis pattern search methods and that of rank ordered pattern
search methods differ only in the first step. After that the two lines of analysis converge

and are more or less identical to similar steps in [12].

The sections that follow correspond to the outline given above. The new results

can be found in §3.1, where we develop the case first for the positive basis pattern

search methods and then for the rank ordered pattern search methods. The remaining

sections complete the analysis, relying largely on results developed in [7] and [12].

3.1. Existence of a direction of descent. The following proposition is the

justification for calling pattern search algorithms "methods of steep descent."
PROPOSITION 3.3. There exists c > 0 such that given any _ > O, we can find

_, > 0 such that ff IIg(xk) II > r] and Ak < _, there is a step s_ E AkBrk for which

-grs_ > ellgk II _ •

The proof of this result differs for positive basis pattern search methods and rank

ordered pattern search methods and thus will be developed independently for each.

In both cases recourse will be had to the following result, the proof of which can

be extracted from §6.2 of [12].

PROPOSITION 3.4. Suppose that {al,---,a_} linearly spans R _. Then given any

x E R n, we can find an ai for which

1

xT ai I >--_(d)v/- _ I1x II [t ai II ,

where n(A) is the condition number of the matrix d = [al...an].

We will also need the following proposition, which says that we can uniformly

bound the first-order Taylor series remainder.

PROPOSITION 3.5. Given e > O, we can find 5 > 0 such that if x E L(xo) and

IIy- x II- _, then

If(y) - f(x)--g(x)T(Y - x) l <_ell y- x I]-

Proof. Let _ = ½min(1, dist(OL(xo),Of_)). If x E L(xo) then the ball

B(x, _1)= { Y I ItY- x II< Vl}

is contained in fL Let K be the closure of UxeL(xo)B(x, _1); note the K is compact by
construction.

Now, if x E L(xo) and y E B(x,_l) we may apply the mean-value theorem to

obtain

f(y) - f(x) = g(z)r(y - x)

14



for somez on the line segment connecting x and y. Then

I f(Y)- f(x) - g(x):r(y- x) = I(g(z)- g(x)) T (y - x) I

<__II_(z) - g(x)II IIy - x II

The uniform continuity of g on K allows us to find 52 > 0 such that if x, y E K and

Ity- x II< 52then

Ng(z)- g(x)It < _-

Thus, if we choose 5 = rain(51,52), then if x e L(x0) and I[ Y - z ]] < 5, we have

] f(y)- f(x)- g(x)T(y -- x) l<_s Ity- • II.

D

3.1.1. The case of positive basis pattern search methods. For positive

basis pattern search methods, Proposition 3.3 follows from purely geometric properties

of the pattern without reference to the objective and the requirement that Ak be

sufficiently small.

We begin by generalizing Proposition 3.4 to positive spanning sets.

PROPOSITION 3.6. Given any set {al,'" ", aT} that positively spans R n, ai _ 0 for

i = 1,..., r, there exists c > 0 such that for all x C R n, we can find an ai for which

x Tai >_ c II x II II ai II.

Proof. We need consider only the case x _ O. According to Theorem 2.1, we can

find a basis for R n among the vectors {al,.", a_}. Thus, possibly upon reordering,

we may assume that the matrix

A = [al-"a,]

is invertible. Then by Proposition 3.4, given any x E R _ we can find a column al in

A for which

1

(8) I xrai I>___(A)v_ IIx tl Ilai tl.

There are two possibilities to consider in (8). The first is that

1

(9) xTai >- _(d)v/- _ II x II It ai II;

there is nothing more to be done in this case.

The other possibility is that

-xZ ai >
a(A)v'_ IIx IIflai II.

In this case, we first appeal to part (3) of Theorem 2.2 to choose a set of scalars

Pjk __ 0, depending only on {al,'", aT}, such that for any j we can express -aj as

r

--aj ----- E ItJ l:ak"

k--1 ,k=/=j

15



This representation for -ai leads to

1

#ikXTak >--n(A)v/- _ U x II IIai II.
k=l,k_i

It must then be the case that for some index f _ i we have

#iexT at >_ 1 1r - 1_(d)4_ IIx IIIIai ii.

Since x 7_ 0 we know that it must be the case that #i_ > 0, so we arrive at

xT ap >_ 1 1 1
#i---_tr - 1 _( A )x/_ II x II II ai II.

If we let

p*=max{#jk I l<_j,k<_r, jCk}

and

11aj IIa. = min IIak II I l_J,k_r},

we obtain

a. 1 1 xll tlaeli
(10) xTae >--#* r - 1 g(A)v/-n II •

Combining (9) and (10) then yields the proposition. []

Proposition 3.3 in the case of positive basis pattern search methods now follows

from the following stronger result.

PROPOSITION 3.7. For a positive basis pattern search method there exists c > 0

such that for any k, there is a step s_ E AkBrk for which

--gT4 _>ell gkII 4 •

Proof. At each iteration k, BFk is a positive basis. Thus, by Proposition 3.6,

there exists C(BFk) > 0 for which we can find v E BFk such that

T-gk v >_C(Brk)II gk IIIIv II.

However, Pk is a member of the finite set of matrices M, so there are only finitely

many possibilities for BI'k. Taking

min 0
c = rkeMC(BFk). . >

and multiplying v by Ak yields the proposition. D-

16



3.1.2. The case of rank ordered pattern search methods. For rank ordered

pattern search methods, we are only assured of a suitable descent direction when Ak

is sufficiently small. When Ak is sufficiently small, the relative ranking of the extreme

objective values (best and worst or lowest and highest) determines a direction that is

suitably close to the direction of steepest descent.
Because the matrices Fk come from a finite set of matrices, the relative sizes of

steps in the core pattern remain bounded and are related to Ak:
if.s k E AkBFk, thenPROPOSITION 3.8. There exist r,R > 0 such that for all k, " i

r_k _ II4 II-<RAk.
Consequently, given _ > O, there exists _ > O, independent of k, such that if

i for all AkBrk.+,_< _, thenII.s_II=<_ s_e
Proof. The restrictions on rk for both the rank ordered and the positive basis

pattern search methods ensure that none of the columns of Fk can be zero. Since B is

invertible, BFk can never have a zero column. Because rk E M and M is a finite set

of matrices it follows that there exist a nonzero lower bound and a finite upper bound

for the norm of all the columns of elements of BM. The proposition follows. [3

If we let 7. = r/R and 7" = R/r, then Proposition 3.8 means that for any

s i• k,s_ E AkBrk, we have

(1_) _, 4 <-4 _<_* 4.

Proposition 3.9 translates the rank ordering of the vertices into a statement about

directions of descent. It says that when Ak is small enough, the edges from the
0to the best vertex v k are either descent directions or are not veryvertices v_, • • •, vk

steep ascent directions.
PROPOSITION 3.9• Given s > 0 and _? > O, there exists v > 0 such that if

I[g(vD I[ > ' and A_ < _, then

OT 0 ' 0 "g(vD (vk vD<_ g(vD vk-v_ i=l,...,n.

Proof. We have f(v °) - f(v_) <_ 0 for all i = t,.-., n. Applying Propositions 3.5
and 3.8 we can find u > 0 such that if Ak < u, then

o T o i o i <f(v °)-f(v_)<O.g(vD (vk-_k)-_ _k-vk _

The result follows. [3

The next step is to show that when Ak is sufficiently small, the direction from the
0

worst vertex to the best vertex is a direction of steep descent from vk.

PROPOSITION 3.10. There exists c > 0 such that given any _ > O, we can find

y > 0 •such that if II g(v_)H > _ and Ak < L,, then

OT 0-g(vk) (vk- _;) >_c g(vD v°- v_

Proof. Let

t_*= max _;(BSk),
S k cF k _M

where by Sk C Fk we refer to the partition I_k = [Sk Rk]. By Proposition 3.4, there is

some index _, 1 < _ < n, for which

g(vk) (_- vD >__ g(v°) v_- v_ .I OT o 1

17



If Ak is sufficiently small, we can divine the sign of the inner product: by Proposi-

tion 3.9, we can find Vl > 0 such that if Ak < Vl, then

o T o 1 1 o v_
g(v k) (v k -- vl) < 2 _*V< g(v_) vk -- •

This means that we must actually have

- g(vk) (_t - vi) >__ g(_) v?,- _i .(12) 0 r 0 1

This shows the existence of a good descent direction. Now we relate (12) to the

o _ Because f(v_) < f(v_) for all i,distinguished direction vk -v t .

f(v O) - f(v_) < f(v O) - f(v_).

Using this inequality and Propositions 3.5 and 3.8, given any s > 0 we can find v2 > 0

such that if At < _2 then

g(v_)T(v_--v_)-x v°-v_ <_f(v_)--f(v_)

o o_ Ifo<_f(v_)-f(vg)<_g(vt) (v k vg)+¢ v t- ,

or

(13)

Now choose

o o_ ÷ o-g(vt)(vt vt)>-g(_t) (vt _)-_ vk _k-vk •

1 1

4 _.x/_r]min(1, 7.),

and v2 accordingly, where 7, is as in (11). Let v = min(vl, v2). Then, if At < u, (12)

holds. Meanwhile,

1 1

(14) 0 1 1 1 1
Itvt - v; II -< _;:-_,_. v_- _; < _-7_, v_- v_

Then (12), (13), and (14) yield

0 T 0 n 1 1 0 v_--g(vt) (vk--vk) ->2_*V_ g(v°) vk_ .

Applying (11) again yields

0T 0 n 1 1
-_(vk) (_k- vk) _>_,_ _.--_ g(v_) _ _; ,

which is the desired estimate. [3

We can now attend to the reflection step at from (5), which may comprise all the
directions to the best vertex from the other vertices.

18



PROPOSITION 3.11. There exists c > 0 such that given any rl > O, we can find

v > 0 such that if IIg(v_)II > rl and Ak < v, then

OT-g(vk) ok> e g(v_) II_k II.

Proof. Recall that the reflection step has the form

i=l

SO

n

_g(v_)Tak i o T _
i=1

n-1

= (v0_ E
i=1

Using Proposition 3.10 we can find vl > 0 such that if Ak < vl, then

-g(v_) (v k v_)>C g(v_) v°-v_ .(16) 0 T 0_

Meanwhile, given any _ > 0, Proposition 3.9 allows us to find v2 so that if Ak _< v2,

then

OT 0 " 0 "g(vk) (vk v_)____ g(v_) vk - v_

for all i = 1,..., n - 1. We will choose E felicitously in a moment. In the meantime,

applying (11) to the previous bound yields

(17) g(vk)°T(v ko_v_) <_eT* g(v_) vk°-v; .

Now let v = min(vl,v2) and suppose Ak _< v. Returning to (15), we can apply

(16) and (17) to obtain the bound

n--1

0_ n " 0 n-g(v°)_,_ >_ cp_ g(v°) v,_ ,,_ -_C,_'y* g(v_) v_-v_[.
i=1

i=l

Now we choose E > 0. Let

p. = rn_n p_

and

C 1 p.
min i "

We are assured of a nonzero p. and _ because I'k = [Sk Rk] E M, and M is a finite

set of matrices, so the minimum in each of the two preceding relations is taken only

over a finite set. With this choice of _ and p., we obtain

- g(vk) _k > -_p. g(v_) v_- v_(18) o T c
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0 n to that of ak. We haveFinally, we must relate the norm of vk - vk

/----1

with p}_ >_ 0, so

n

i=1

o v i i = 1,.. n are the columns of AkBSk, possibly permuted:Now, the vectors vk - k, ",

[(v_- yD.--(v° - v_)]= akBSkn_,

where Hk is a permutation matrix. Consider any invertible n × n matrix A with

columns al,"',an. For any i,j, from ej = A-laj and ai = Aei we obtain the

inequalities 1 <_ II A-1 II IIaj [I and IIai II -< IIA I[, whence II ai [I <- n(A) I]aj II. Thus

for any i we have

v_- 4 <_n(Z_kBS_n_)v_ - _ = _(BS_) v° - v_ ].

The latter equality holds because IIk is an orthogonal transformation. Returning to

(19), we then have

n-1 ) 0ll,_kll_ P_+ZA'_(BSk) _k-vP •
i=1

Since there are only finitely many choices for Sic and the p_, we can find a constant

K, independent of k, such that

(20) IIo-kII< K v_- v; .

The result then follows from (18) and (20). [3
0 is not a stationary pointA consequence of the preceding proposition is that if v k

and if Ak is sufficiently small, then the reflection step will improve upon the best

v 0objective value f(k), and not just f(xk). However, we have chosen to pose Proposition

3.3 in terms of xk, which is not necessarily v_. Proposition 3.3 now follows as a corollary

of Proposition 3.11 and the uniform continuity of g:
COROLLARY 3.12. There exists c > 0 such that given any U > O, we can find

u > 0 .such that if IIg(v°)II>, and ak < u, the,_

--g(x_)T_k>_cllg(x_)II II_ I1"

Proof. Choose /'11 > 0 SO small that if Ak < /-'1, then the conclusion of Proposi-
tion 3.11 holds. Then

= -g(vk) ak + - ak

>_ c g(vD II,,kII- g(vD-g(xk) II,_kII.
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Next choose _'2 > 0 so small that if Ak < _'2, then

g(vD - g(xk) _<ct]

and

1

g(v_) _ _ll g(xk)II.

Then, if Ak < min(ul, v2),

C

-g(xk) T ak >_-$ II g(xk) II II ,_k II.

tq

3.2. Finding an acceptable step. From this point on the convergence analyses

for positive basis pattern search methods and rank ordered pattern search methods

are identical and follow more or less directly from results developed in [7] and [12].

The following two results come from [12], to which we refer the reader for the

proofs. The first result indicates one sense in which Ak regulates step length.

LEMMA 3.13 (LEMMA 3.1 FROM [12]). There exists a constant _. > O, indepen-

dent of k, such that for any trial step s_ 7_ 0 produced by a pattern search method for
i

unconstrained minimization (Algorithm 1) we have II II->ca .
We also recall

LEMMA 3.14 (LEMMA 3.6 FROM [12]). If there exists a constant C > 0 such
c ithat for all k, C > II kS, for all i = 1,...,p, then there exists a constant ¢. > O,

independent of k, such that for any trial step .sik produced by a pattern search method

for unconstrained minimization (Algorithm 1) we have Ak >_ ¢.lls_ll.

We are now ready to state and prove the main result for this section.

PROPOSITION 3.15. Suppose that L(Xo) is compact and that f is continuously

differentiable on an open neighborhood f_ of L(xo). Then given any t] > O, there exists

5 > O, independent of k, such that if Ak < 6 and 11g(xk) II > t], then either the

positive basis or rank ordered pattern search method will find an acceptable step sk;

i.e., f(xk + sk) < f(xk).

If, in addition, the columns of the generating matrices remain bounded in norm

and we enforce the Strong Hypotheses on Exploratory Moves, then, given any 71> O,

there exist 5 > 0 and c > O, independent of k, such that if Ak < 5 and tl g(xk) II > t],

then

f(Xk+l) <_ f(xk) -- c IIg(xk) II IIskII-

Pro@ Proposition 3.3 assures us that we can find 61 > 0 such that if Ak < 51,

then there is a step s_ E AkBFk for which

g(xk) _k <--cllg(xk) l] s; .(21) r

Meanwhile, Proposition 3.5 says that we can choose 62 > 0 such that if Ak < 52, then

• _X _Tsi C--_t] "(22) f(xk "_-s'k) - f(xk) <_ gt k) k + 2 S_ .
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Thus, if Ak < $ = min(_l, _2), (21) and (22) yield

• C "

f(xk + 4) - f(xk) < -_ IIg(xk) II 4 ,

i
and so f(xik) - f(xk + sik) < f(xk) for at least one s k e AkBFk. The Hypotheses on

Exploratory Moves guarantee that if

min{f(xk + y) I y _ zxkBrk} < f(xk),

then f(xk + sk) < f(xk). This proves the first part of the Proposition.

If, in addition, we enforce the Strong Hypotheses on Exploratory Moves, then we

actually have

e

f(xk + sk) - f(xk) < --_ [I gk II s_ .

Lemma 3.13 then ensures that

_ e A
f(xk + sk) < f(xk) - -_. k IIg(xk)H.

Applying Lemma 3.14, we arrive at

e

f(xk + sk) <_ f(xk) - -_C*¢* IIg(xk) II II sk II,

which is the desired estimate. D

The following corollary, which follows from Proposition 3.15 and the update for

Ak, corresponds to Proposition 3.4 in [12]:

COROLLARY 3.16. Suppose that L(xo) is compact and that f is continuously

differentiable on an open neighborhood f_ of L(xo). Ifliminfk_+_ II g(xk) II 7_ O,
then there exists a constant A, > 0 such that for all k, Ak > A..

If liminfk--.+_ IIg(xk) II _ O, then Proposition 3.15 says that there is a uniform

bound 6 > 0 such that once Ak < 6, the pattern search algorithm will necessarily find

an acceptable step. Since we reduce Ak only if we have an unsuccessful iteration, this

means we would at some point stop reducing Ak.

3.3. The algebraic nature of the iterates. The iterates produced by pattern

search methods have a specific algebraic form. The rank ordered and positive basis

pattern search methods inherit this basic algebraic structure. The next result, a proof

of which can be found in [12], is key to the convergence of pattern search methods.

THEOREM 3.17 (THEOREM 3.2 FROM [12]). Any iterate Xg produced by a pattern

search method for unconstrained minimization (Algorithm 1) can be expressed in the

following form:

N-1

xN = xo + (Z_L_-_) /'o_ Z z_,
k=0

where

• xo is the initial guess,

• fl/a =_ r, with a, fl E N and relatively prime, and _- is as defined in the

algorithm for updating Ak (Algorithm 2),

• rLB and rUB depend on N,
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• A0 is the initial choice for the step length control parameter,

• B is the basis matrix, and

• zkEZ _, k=O,...,N-1.

The next theorem combines the strict algebraic structure of the iterates, the simple

decrease condition, and the algorithm for updating Ak, to reach a conclusion about

the limiting behavior of Ak.
THEOREM 3.18. Suppose that L(xo) is compact. Then liminfk-_+_ Ak = 0.

The proof is identical to that of Theorem 3.3 in [12]. Briefly, Theorem 3.17 says that
the iterates lie on a rational lattice. If liminfk--÷+o¢ Ak # 0, then there can be only a

finite number of distinct points visited by the algorithm. However, Proposition 3.15

says that unless we are at a stationary point, we will eventually choose a new iterate

with a strictly lower objective value; this is at odds with the fact that we only visit a

finite number of distinct points.

3.4. The proofs of Theorem 3.1 and Theorem 3.2. The conclusion of the

proof of Theorem 3.1 is identical to that of Theorem 3.5 in [12]. Suppose that

liminfk-_+oo I] g(xk) I] # O. Then Corollary 3.16 tells us that there exists A. > 0

such that for all k, Ak >__A.. But this contradicts Theorem 3.18.

The proof of Theorem 3.2 follows that of Theorem 3.7 in [12], to which we refer

the reader.

4. Concluding remarks. We believe that versions of the two classes of algo-

rithms we have introduced in this paper can be developed for bound constrained

minimization as well. The positive basis pattern search methods for unconstrained

minimization require a positive basis for Rn; the correct analog for bound constrained

minimization should require a positive basis for the tangent cone of the feasible region

at each iterate. The work in [7] uses such a basis that appears to be maximal in

size. The theory of positive linear dependence used in the unconstrained case suggests

a line of development to sharpen the results in [7], which may in turn reduce the

computational cost per iteration in the bound constrained case.

Similarly, the heuristic of approximating the direction of steepest descent using

the best and worst of n + 1 vertices (determined by their objective values) should also

be applicable to the bound constrained case. There we would only consider feasible

points and develop a crude approximation for the direction considered in gradient

projection algorithms.
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